
osm2gmns
Release 0.7.3

Jiawei Lu, Xuesong (Simon) Zhou

Jul 19, 2023

CONTENTS

1 Publication 3

2 Main Features 5

3 Contents 7
3.1 Installation . 7
3.2 GMNS . 7
3.3 Multi-Resolution Modeling . 8
3.4 Quick Start . 13
3.5 Functions . 22
3.6 Sample Networks . 27
3.7 Acknowledgement . 28

Index 31

i

ii

osm2gmns, Release 0.7.3

Authors: Jiawei Lu, Xuesong (Simon) Zhou
Email: jiaweil9@asu.edu, xzhou74@asu.edu

osm2gmns is an open-source Python package that enables users to conveniently obtain and manipulate any networks
from OpenStreetMap (OSM). With a single line of Python code, users can obtain and model drivable, bikeable, walk-
able, railway, and aeroway networks for any region in the world and output networks to CSV files in GMNS format for
seamless data sharing and research collaboration. osm2gmns mainly focuses on providing researchers and practition-
ers with flexible, standard and ready-to-use multi-modal transportation networks, as well as a bunch of customized and
practical functions to facilitate various research and applications on traffic modeling.

CONTENTS 1

mailto:jiaweil9@asu.edu
mailto:xzhou74@asu.edu
https://www.openstreetmap.org/
https://github.com/zephyr-data-specs/GMNS

osm2gmns, Release 0.7.3

2 CONTENTS

CHAPTER

ONE

PUBLICATION

Lu, J., & Zhou, X.S. (2023). Virtual track networks: A hierarchical modeling framework and open-source tools for
simplified and efficient connected and automated mobility (CAM) system design based on general modeling network
specification (GMNS). Transportation Research Part C: Emerging Technologies, 153, 104223. paper link

3

https://doi.org/10.1016/j.trc.2023.104223

osm2gmns, Release 0.7.3

4 Chapter 1. Publication

CHAPTER

TWO

MAIN FEATURES

• Obtain any networks from OSM. osm2gmns parses map data from OSM and output networks to csv files in
GMNS format.

• Standard network format. osm2gmns adopts GMNS as the network format for seamless data sharing and research
collaboration.

• Ready-to-use network. osm2gmns cleans erroneous information from OSM map data and is able to fill up critical
missing values, e.g., lanes, speed and capacity, to quickly provide ready-to-use networks.

• Directed network. two directed links are generated for each bi-directional osm ways identified by osm2gmns.

• Multi-modal support. five different network types are supported, including auto, bike, walk, railway, and aeroway

• Customized and practical functions to facilitate traffic modeling. functions include complex intersection consol-
idation, moevement generation, traffic zone creation, short link combination, network visualization.

• Multi-resolution modeling. osm2gmns automatically constructs the corresponding mesoscopic and microscopic
networks for any macroscopic networks in GMNS format.

5

osm2gmns, Release 0.7.3

6 Chapter 2. Main Features

CHAPTER

THREE

CONTENTS

3.1 Installation

You can install the latest release of osm2gmns at PyPI via pip:

pip install osm2gmns

By running the command above, the osm2gmns package along with three required dependency packages (Shapely,
osmium, and numpy) will be installed to your computer (if they have not been installed yet).

3.1.1 Potential Issues

• Shapely

If you install osm2gmns in a conda environment, you may get an error message: “OSError: [WinError 126] The
specified module could not be found” when importing osm2gmns. To resolve this issue, you need to uninstall the
Shapely package first, and reinstall it manually using the command below.

conda install shapely

• osmium

Windows users may get an error message related to osmium (one of the dependency packages of osm2gmns) when
installing or using osm2gmns with Python version > 3.8. The reason is the highest Python version that osmium supports
on PyPI is Py3.8 for Windows.

Affected users can download binary wheels of osmium from our repository or osmium github homepage and use pip
to install the wheel file that matches your Python version.

3.2 GMNS

General Modeling Network Specification (GMNS), proposed by the Zephyr Foundation, defines a common human
and machine readable format for sharing routable road network files. It is designed to be used in multi-modal static
and dynamic transportation planning and operations models. It will facilitate the sharing of tools and data sources by
modelers. For additional information on GMNS goals, history and requirements, please see the wiki.

GMNS (version 0.92) includes the following features for use in static models:

• Configuration information and use definitions.

• Node and link files, to establish a routable network.

7

https://pypi.org/project/osm2gmns
https://packaging.python.org/key_projects/#pip
https://github.com/Toblerity/Shapely
https://github.com/osmcode/pyosmium
https://github.com/numpy/numpy
https://github.com/Toblerity/Shapely
https://github.com/osmcode/pyosmium
https://github.com/jiawlu/OSM2GMNS/tree/master/dependencies
https://github.com/osmcode/pyosmium/actions
https://github.com/zephyr-data-specs/GMNS
https://zephyrtransport.org
https://github.com/zephyr-data-specs/GMNS/wiki

osm2gmns, Release 0.7.3

For dynamic models, GMNS (version 0.92) includes the following optional additional features:

• A segment file, with information that overrides the characteristics of a portion of a link.

• A lane file that allocates portions of the right-of-way. Lanes include travel lanes used by motor vehicles. They
may also optionally include bike lanes, parking lanes, and shoulders.

• A segment_lane file that specifies additional lanes, dropped lanes, or changes to lane properties on a segment of
a link.

• A movement file that specifies how inbound and outbound lanes connect at an intersection.

• Link, segment, lane and movement time-of-day (TOD) files, that allocate usage of network elements by time-of-
day and day-of-week.

• Signal phase and timing files, for basic implementation of traffic signals.

osm2gmns uses GMNS as the standard when processing and manipulating networks, and thus any network in GMNS
format is fully compatible with osm2gmns.

3.3 Multi-Resolution Modeling

Multi-Resolution Modeling (MRM) is a modeling technology that creates a family of models that represent the same
phenomenon or a set of questions at more than two different resolutions. The fine-grained spatial scales could cover
corridors, roads, and lane representations, and the temporal resolution refers to the time interval (or time stamps) at
which the dynamic state of the model is updated, typically ranging from days to seconds. Each type of model (macro-
scopic, mesoscopic, or microscopic) has its own advantages and disadvantages, and represents a trade-off between
scales and resolution levels. The ultimate goal of MRM is to seamlessly integrate models with different temporal and
spatial resolutions, while the focus of the cross-resolution approach is to bridge the gaps between macroscopic and
microscopic levels, so as to provide strong theoretical support and deeper insights for both levels.

The osm2gmns package adopts the GMNS standard and further extends it to a inherently consistent multi-resolution net-
work modeling standard. With a single line of code, osm2gmns can help users generate corresponding mesoscopic and
microscopic networks for any given macroscopic networks in GMNS format, enabling practitioners and researchers
to carry out various studies on transportation planning, designing, optimization, simulation, and computation under
different spatial granularities. In this section, we mainly talk about the three levels of transportation network represen-
tation.

8 Chapter 3. Contents

https://github.com/zephyr-data-specs/GMNS

osm2gmns, Release 0.7.3

Fig. 1: Multi-resolution network representation

3.3. Multi-Resolution Modeling 9

osm2gmns, Release 0.7.3

3.3.1 Macroscopic Network

• node.csv

Field Type Re-
quired?

Comments

name string
node_id int yes unique key
osm_node_idstring

or int
corresponding node id in osm data

osm_highwaystring point type in osm data
zone_id int
ctrl_type enum signal; null
node_type string
activ-
ity_type

string defined by adjacent links

is_boundaryenum -1: boundary node only with incoming links; 0: no; 1: boundary node only with
outgoing links; 2: boundary node with both incoming and outgoing links

x_coord dou-
ble

yes WGS 84 is used in osm

y_coord dou-
ble

yes WGS 84 is used in osm

inter-
sec-
tion_id

int nodes belonging to one complex intersection have the same id

poi_id int id of the corresponding poi
notes string

• link.csv

A link is an edge in a network, defined by the nodes it travels from and to. It may have associated geometry
information[2]. Similar to node.csv, We also added several new attributes to the link file. Detailed link data dictio-
nary is listed below.

Field Type Required? Comments
name string
link_id int yes unique key
osm_way_id string or int corresponding way id in osm data
from_node_id int yes
to_node_id int yes
dir_flag enum 1: forward, -1: backward, 0:bidirectionial
length float unit: meter
lanes int
free_speed float unit: kilometer/hour
capacity float unit: veh/hr/lane
link_type_name string
link_type int
geometry Geometry wkt
allowed_uses enum auto, bike, walk
from_biway bool 1: link created from a bidirectional way, 0: not
is_link bool 1: link connecting two roads, 0: not

There are two optional files including movement.csv and segement.csv that follow the exact same format as defined

10 Chapter 3. Contents

https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

osm2gmns, Release 0.7.3

in the GMMS standard. Readers can check the GMNS website for details.

In addition to the above files defined in the GMNS standard, osm2gmns can also produce poi.csv files where point
of interest information is stored. Detailed poi data dictionary is listed below.

Field Type Required? Comments
name string
poi_id int yes unique key
osm_way_id string or int corresponding way id in osm data
osm_relation_id string or int corresponding relation id in osm data
building string building tag in osm data
amenity string amenity tag in osm data
way string way tag in osm data
geometry Geometry yes wkt
centroid Geometry wkt
area float area of the poi. unit: square meter
area_ft2 float area of the poi. unit: square feet

3.3.2 Mesoscopic Network

Compared to the original macroscopic network, the mesoscopic network has more detailed information of the intersec-
tions. In the mesoscopic network, the research team expanded each intersection represented by a node in the macro-
scopic network. The team built a connector link for each intersection movement to facilitate intersection modeling,
especially for signalized intersections.

Macroscopic and mesoscopic networks have different link-level coding schemes. Macroscopic networks often represent
a road segment between two adjacent intersections as a link; however, lane changes sometimes occur within a link,
especially when close to intersections. Changes in the number of lanes result in capacity changes, but the link attributes
cannot properly reflect these changes. This situation may bring inconvenience or even potential errors when performing
network modeling. In the GMNS standard, the comma-separated values (CSV) file, segment.csv, stores lane changes.
The research team split and converted each link with lane changes from a macroscopic network to multiple mesoscopic
links so that each mesoscopic link has a homogeneous capacity.

• node.csv

Field Type Re-
quired?

Comments

node_id int yes unique key
zone_id int
x_coord dou-

ble
yes WGS 84 is used in osm

y_coord dou-
ble

yes WGS 84 is used in osm

macro_node_id int id of its parent macroscopic node
macro_link_id int id of its parent macroscopic link
activ-
ity_type

string

is_boundary enum -1: boundary node only with incoming links; 0: no; 1: boundary node only
with outgoing links

• link.csv

A link is an edge in a network, defined by the nodes it travels from and to. It may have associated geometry

3.3. Multi-Resolution Modeling 11

https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

osm2gmns, Release 0.7.3

information[2]. Similar to node.csv, We also added several new attributes to the link file. Detailed link data dictio-
nary is listed below.

Field Type Re-
quired?

Comments

link_id int yes unique key
from_node_id int yes
to_node_id int yes
dir_flag enum 1: forward, -1: backward, 0:bidirectionial
length float unit: meter
lanes int
free_speed float unit: kilometer/hour
capacity float unit: veh/hr/lane
link_type_namestring
link_type int
geometry Geom-

etry
wkt

macro_node_idint id of its parent macroscopic node
macro_link_id int id of its parent macroscopic link
mvmt_txt_id enum NBL, NBT, NBR, NBU, SBL, SBT, SBR, SBU, EBL, EBT, EBR, EBU,

WBL, WBT, WBR, WBU
al-
lowed_uses

enum auto, bike, walk

3.3.3 Microscopic Network

In the Maryland case study, microscopic networks used a lane-by-lane, cell-based representation. Instead of a concep-
tual line segment, lanes represented each link. The research team further discretized lanes into small cells to accurately
describe vehicle motion status when moving on the road. The team also created changing cells to enable vehicles to
switch trajectories between lanes. Users can customize the length of cells to accommodate different modeling needs.

• node.csv

Field Type Re-
quired?

Comments

node_id int yes unique key
zone_id int
x_coord dou-

ble
yes WGS 84 is used in osm

y_coord dou-
ble

yes WGS 84 is used in osm

meso_link_id int id of its parent mesoscopic link
lane_no int start from 1 from inner side to outer side
is_boundary enum -1: boundary node only with incoming links; 0: no; 1: boundary node only with

outgoing links

• link.csv

A link is an edge in a network, defined by the nodes it travels from and to. It may have associated geometry
information[2]. Similar to node.csv, We also added several new attributes to the link file. Detailed link data dictio-
nary is listed below.

12 Chapter 3. Contents

https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

osm2gmns, Release 0.7.3

Field Type Re-
quired?

Comments

link_id int yes unique key
from_node_id int yes
to_node_id int yes
dir_flag enum 1: forward, -1: backward, 0:bidirectionial
length float unit: meter
lanes int
free_speed float unit: kilometer/hour
capacity float unit: veh/hr/lane
link_type_namestring
link_type int
geometry Geom-

etry
wkt

macro_node_idint id of its parent macroscopic node
macro_link_id int id of its parent macroscopic link
meso_link_id int id of its parent mesoscopic link
cell_type enum 1: traveling cell, 2: lane changing cell
addi-
tional_cost

float

lane_no int start from 1 from inner side to outer side
mvmt_txt_id enum NBL, NBT, NBR, NBU, SBL, SBT, SBR, SBU, EBL, EBT, EBR, EBU,

WBL, WBT, WBR, WBU
al-
lowed_uses

enum auto, bike, walk

[1] https://github.com/zephyr-data-specs/GMNS/blob/master/Specification/Node.md
[2] https://github.com/zephyr-data-specs/GMNS/blob/master/Specification/Link.md

3.4 Quick Start

In this section, some examples are provided to quickly show how to use osm2gmns to generate, manipulate and output
networks.

3.4.1 Download OSM Data

To reduce uncertainties while directly parsing network data from the osm server via APIs, osm2gmns uses downloaded
osm files to extract useful network information. As a result, the first step is preparing osm files.

Thanks to the open-source nature of OpenStreetMap, there are lots of APIs and mirror sites that we can use to download
osm map data. We list several popular sites here for users to choose.

1) OpenStreetMap Homepage

On OpenStreetMap homepage, click the Export button to enter Export mode. Before downloading, you may need
to span and zoom in/out the map to make sure that your target area is properly shown on the screen. Or, you can use
Manually select a different area to select your area more precisely. Click the Export button in blue to export
the network you want.

Note that if the target area is too large, you may get an error message: “You requested too many nodes (limit is 50000).
Either request a smaller area, or use planet.osm”. In this case, you can always click Overpass API to download the

3.4. Quick Start 13

https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
https://github.com/zephyr-data-specs/GMNS/blob/master/Specification/Node.md
https://github.com/zephyr-data-specs/GMNS/blob/master/Specification/Link.md
https://www.openstreetmap.org

osm2gmns, Release 0.7.3

network you need via a mirror site.

Fig. 2: Download osm data from OpenStreetMap homepage

2) Geofabrik

Different from the way of downloading map data from OpenStreetMap homepage, Geofabrik enables you to download
network data for administrative areas. On OpenStreetMap homepage, we can only download areas defined by rectan-
gles. In Geofabrik, you can click the corresponding quick link of your interested region to download the map data you
need. You can always click the name of regions to check if sub region data are available.

Generally, there are three types of file format for users to choose when downloading map data. osm2gmns supports
.pbf and .osm files. In osm2gmns, networks stored in .osm files are parsed more quickly than those stored in .pbf
files. However, compared with .pbf files, .osm files take much more hard disk space to store networks and much more
space in RAM while parsing.

3) BBBike

If your target area is neither an administrative region nor a rectangle, BBBike may be a good choice. BBBike enables
you to select your region using a polygon. BBBike supports numerous file formats to output and store network data.
Users can select a proper one according to their requirements.

Note:

• The file formats of map data supported in osm2gmns include .osm, .xml, and .pbf.

4) Overpass API

osm2gmns also enables users to download OSM data within the region of interest using a built-in function. A region
can be a state, city, or even university. On OpenStreetMap homepage, search the region name to get its unique relation
id. The following example shows how to download Tempe city OSM data using function downloadOSMData.

>>> import osm2gmns as og

>>> og.downloadOSMData(110833, 'tempe.osm')

14 Chapter 3. Contents

https://download.geofabrik.de/
https://extract.bbbike.org/
https://extract.bbbike.org/
https://extract.bbbike.org/
https://www.openstreetmap.org

osm2gmns, Release 0.7.3

Fig. 3: Download osm data from Geofabrik

Fig. 4: Download osm data from BBBike

3.4. Quick Start 15

osm2gmns, Release 0.7.3

Fig. 5: Get region id from OpenStreetMap homepage

3.4.2 Parse OSM Data

We use the region around Arizona State University, Tempe Campus in this guide to introduce some major functions in
osm2gmns.

Obtain a transportation network from an osm file.

>>> import osm2gmns as og

>>> net = og.getNetFromFile('asu.osm')

A link will be included in the network file from osm database if part of the link lies in the region that users selected.
If argument strict_mode (default: True) is set as True, link segments that outside the region will be cut off when
parsing osm data. If argument strict_mode is set as False, all links in the network file will be imported.

One loaded network may contain several sub networks, with some sub networks not accessible from others. In most
cases, these sub networks include a large sub network and some isolated nodes or links. When the number of nodes of
a sub network is less than argument min_nodes (default: 1), this sub network will be discarded.

Users can use argument combine (default: False) to control short link combinations. If combine is enabled, two-
degree nodes (nodes with one incoming link and one outgoing link) will be removed, and two adjacent links will be
combined to generate a new link. Note that link combination will be performed only when two candidate links have
the exact same link attributes, e.g., name, speed, lanes.

Notice that most links do not have “lanes” information in the map data provided by OpenStreetMap. Thus, we use
a default lanes dictionary for each link type in osm2gmns. By setting default_lanes (default: False) as True,
the default value will be assigned to a link if it does not come with “lanes” information. The default dictionary in
osm2gmns:

default_lanes_dict = {'motorway': 4, 'trunk': 3, 'primary': 3, 'secondary': 2, 'tertiary
→˓': 2,

'residential': 1, 'service': 1, 'cycleway':1, 'footway':1, 'track
(continues on next page)

16 Chapter 3. Contents

osm2gmns, Release 0.7.3

Fig. 6: Parsed network with strict_mode=False

Fig. 7: Parsed network with strict_mode=True

3.4. Quick Start 17

osm2gmns, Release 0.7.3

(continued from previous page)

→˓':1,
'unclassified': 1, 'connector': 2}

default_speed_dict = {'motorway': 120, 'trunk': 100, 'primary': 80, 'secondary': 60,
→˓'tertiary': 40,

'residential': 30, 'service': 30, 'cycleway':5, 'footway':5, 'track
→˓':30,

'unclassified': 30, 'connector':120}
default_capacity_dict = {'motorway': 2300, 'trunk': 2200, 'primary': 1800, 'secondary':␣
→˓1600, 'tertiary': 1200,

'residential': 1000, 'service': 800, 'cycleway':800, 'footway':800,
→˓ 'track':800,

'unclassified': 800, 'connector':9999}

default_lanes also accepts a dictionary. In that case, osm2gmns will use the dictionary provided by users to update
the default dictionary.

A similar fashion applies for argument default_speed and default_capacity.

3.4.3 Output Networks to CSV

Based on the net instance obtained from the last step, outputNetToCSV can be used to output the parsed network to
CSV files.

>>> og.outputNetToCSV(net)

Users can use argument output_folder to specify the folder to store output files. Node information will be written
to node.csv, while link information will be written to link.csv.

3.4.4 Consolidate Intersections

In OpenStreetMap, one large intersection is often represented by multiple nodes. This structure brings some difficulties
when performing traffic-oriented modelings. osm2gmns enables users to consolidate intersections that are originally
represented by multiple nodes into a single node. Note that osm2gmns only identifies and consolidates signalized
intersections.

>>> net = og.getNetFromFile('asu.osm')
>>> og.consolidateComplexIntersections(net, auto_identify=True)
>>> og.outputNetToCSV(net)

Users can visualize the consolidated network in QGIS or NeXTA. For complex interestions that were not successfully
identified and consolidated by osm2gmns, users can manually specify them by revising the column “intersection_id” in
node.csv and utilize the commands below to do the re-consolidation. Nodes assgined with the same “intersection_id”
will be consolidated into a new node.

>>> net = og.loadNetFromCSV(node_file='node.csv', link_file='link.csv')
>>> og.consolidateComplexIntersections(net, auto_identify=False)
>>> og.outputNetToCSV(net, output_folder='consolidated')

18 Chapter 3. Contents

https://qgis.org
https://github.com/asu-trans-ai-lab/NeXTA4GMNS

osm2gmns, Release 0.7.3

Fig. 8: Complex intersection consolidation

3.4.5 Network Types and POI

osm2gmns supports five different network types, including auto, bike, walk, railway, aeroway. Users can get
different types of networks by specifying the argument network_types (default: (auto,)).

>>> # obtain the network for bike
>>> net = og.getNetFromFile('asu.osm', network_types='bike')
>>> # obtain the network for walk and bike
>>> net = og.getNetFromFile('asu.osm', network_types=('walk','bike'))
>>> # obtain the network for auto, railway and aeroway
>>> net = og.getNetFromFile('asu.osm', network_types=('auto','railway','aeroway'))

Obtain POIs (Point of Interest) from osm map data.

>>> net = og.getNetFromFile('asu.osm', POI=True)

If POI (default: False) is set as True, a file named poi.csv will be generated when outputting a network using
function outputNetToCSV.

Connect POIs with transportation network.

>>> net = og.getNetFromFile('asu.osm', POI=True)
>>> og.connectPOIWithNet(net)

By using function connectPOIWithNet, a node located at the centroid of each POI will be generated to represent the
POI. Then connector links will be built to connect the POI node with the nearest node in the transportation network.

3.4. Quick Start 19

osm2gmns, Release 0.7.3

Fig. 9: Network with POIs

20 Chapter 3. Contents

osm2gmns, Release 0.7.3

Fig. 10: Connect POIs with network

3.4. Quick Start 21

osm2gmns, Release 0.7.3

3.4.6 Generate Multi-Resolution Networks

osm2gmns can generate the corresponding mesoscopic and microscopic network for any macroscopic networks in
GMNS format.

Generate multi-resolution networks from an osm file.

>>> net = og.getNetFromFile('asu.osm', default_lanes=True)
>>> og.consolidateComplexIntersections(net, auto_identify=True)
>>> og.buildMultiResolutionNets(net)
>>> og.outputNetToCSV(net)

Generate multi-resolution networks from a macroscopic network provided by user (movement information is automat-
ically generated by osm2gmns).

>>> net = og.loadNetFromCSV(node_file='node.csv', link_file='link.csv')
>>> og.buildMultiResolutionNets(net)
>>> og.outputNetToCSV(net)

Generate multi-resolution networks from a macroscopic network provided by user (movement information is from the
user).

>>> net = og.loadNetFromCSV(node_file='node.csv', link_file='link.csv', movement_file=
→˓'movement.csv')
>>> og.buildMultiResolutionNets(net)
>>> og.outputNetToCSV(net)

3.5 Functions

3.5.1 osm2gmns.osmnet

osm2gmns.osmnet.build_net.getNetFromFile(filename='map.osm', network_types=('auto',), link_types='all',
POI=False, POI_sampling_ratio=1.0, strict_mode=True,
offset='no', min_nodes=1, combine=False, bbox=None,
default_lanes=False, default_speed=False,
default_capacity=False, start_node_id=0, start_link_id=0)

Get an osm2gmns Network object from an osm file

Parameters

• filename (str) – path of an osm file; can be absolute or relative path; supported osm file
formats: .osm, .xml, and .pbf

• network_types (str, tuple of strings, list of strings, or set of
strings) – osm2gmns supports five different network types, including auto, bike, walk,
railway, and aeroway. network_types can be any one or any combinations of the five
supported network types

• link_types (str, tuple of strings, list of strings, or set of
strings) – supported link types: motorway, trunk, primary, secondary, tertiary, resi-
dential, service, cycleway, footway, track, unclassified, connector, railway, and aeroway.

• POI (bool) – if extract point of interest information

22 Chapter 3. Contents

osm2gmns, Release 0.7.3

• POI_sampling_ratio (float) – prcentage of POIs to be extracted if POI is set as True.
this value should be a float number between 0.0 and 1.0.

• strict_mode (bool) – if True, network elements (node, link, poi) outside the boundary
will be discarded

• offset (str) – offset overlapping links. the value of this argument can be ‘left’, ‘right’, or
‘no’

• min_nodes (int) – a network return by the function may contain several sub-networks
that are disconnected from each other. sub-networks with the number of nodes less than
min_nodes will be discarded

• combine (bool) – if True, adjacent short links with the same attributes will be combined into
a long link. the operation will only be performed on short links connected with a two-degree
nodes (one incoming link and one outgoing link)

• bbox (tuple of four float/int values, list of four float/int values,
None) – specify the boundary of the network to be extracted, consisting of minimum latitude,
minimum longtitude, maximum latitude, and maximum longitud. if None, osm2gmns will
try to find network boundary from the input osm file

• default_lanes (bool, dict) – if True, assign a default value for links without lanes
information based on built-in settings. if a dict, assign a default value for links without lanes
information based on the dict passed by users.

• default_speed (bool, dict) – if True, assign a default value for links without speed
information based on built-in settings. if a dict, assign a default value for links without
speed information based on the dict passed by users.

• default_capacity (bool, dict) – if True, assign a default value for links without ca-
pacity information based on built-in settings. if a dict, assign a default value for links without
capacity information based on the dict passed by users.

• start_node_id (int) – osm2gmns assigns node_ids to generated nodes starting from
start_node_id.

• start_link_id (int) – osm2gmns assigns link_ids to generated links starting from
start_link_id

Returns
network – osm2gmns Network object

Return type
Network

osm2gmns.osmnet.complex_intersection.consolidateComplexIntersections(network,
auto_identify=False,
intersection_file=None,
int_buffer=20.0)

Consolidate each complex intersection that are originally represented by multiple nodes in osm into one node.
Nodes with the same intersection_id will be consolidated into one node. intersection_id of nodes can be obtained
in three ways.

(1) set the argument auto_identify as True, then osm2gmns will automatically identify complex intersections and
assign intersection_id for corresponding nodes.

(2) provide an intersection file that specifies the central position (required) and buffer (optional) of each com-
plex intersection.

(3) user can assign intersection_id to nodes manually in network csv files (node.csv), and load the network
using function loadNetFromCSV provided by osm2gmns.

3.5. Functions 23

osm2gmns, Release 0.7.3

The priority of the three approaches is (3) > (2) > (1). Rules used in the approach (1) to identify if two nodes
belong to a complex intersection: (a) ctrl_type of the two nodes must be signal; (b) there is a link connecting
these two nodes, and the length of the link is shorter than or equal to the argument int_buffer.

Parameters

• network (Network) – osm2gmns Network object

• auto_identify (bool) – if automatically identify complex intersections using built-in
methods in osm2gmns. nodes that belong to a complex intersection will be assigned with
the same intersection_id

• intersection_file (str) – path of an intersction csv file that specifies complex intersec-
tions. required fields: central position of intersections (in the form of x_coord and y_coord);
optional field: int_buffer (if not specified, the global int_buffer will be used, i.e., the forth
arugment). For each record in the intersection_file, osm2gmns consolidates all nodes with a
distance to the central position shorter than buffer.

• int_buffer (float) – the threshold used to check if two nodes belong to one complex
intersection. the unit is meter

Return type
None

osm2gmns.osmnet.combine_links.combineShortLinks(network)
Combine links connected by two-degree nodes into a longer link

Parameters
network (Network) – osm2gmns Network object

Return type
None

osm2gmns.osmnet.enrich_net_info.generateNodeActivityInfo(network)
Generate activity information, including activity_type, is_boundary, zone_id for nodes. activity_type includes
motorway, primary, secondary, tertiary, residential, etc, and is determined by adjacent links

Parameters
network (Network) – osm2gmns Network object

Return type
None

osm2gmns.osmnet.enrich_net_info.generateLinkVDFInfo(network)
Generate VDF information, including VDF_fftt1 and VDF_cap1 for links. The unit of VDF_fftt1 and VDF_cap1
are min and veh/hour/link, respectively

Parameters
network (Network) – osm2gmns Network object

Return type
None

osm2gmns.osmnet.pois.connectPOIWithNet(network)
Connect POIs with the traffic network. Specifically, for each POI, osm2gmns will build a bi-directional connector
to connect the POI with its nearest node in the traffic network

Parameters
network (Network) – an osm2gmns Network object

Return type
None

24 Chapter 3. Contents

osm2gmns, Release 0.7.3

osm2gmns.osmnet.visualization.show(network, save=False, figsize=None)
Show the network in a pop-up window

Parameters

• network (Network) – an osm2gmns Network object

• save (bool) – if True, the plot will also be saved to a local file named network.jpg

• figsize (tuple of int/float, list of int/float) – size of the figure

Return type
None

osm2gmns.osmnet.visualization.saveFig(network, picpath='network.jpg', figsize=None)
Save the network plot to a local file

Parameters

• network (Network) – an osm2gmns Network object

• picpath (str) – path to store to network plot. can be an absolute or a relative path

• figsize (tuple of int/float, list of int/float) – size of the figure

Return type
None

3.5.2 osm2gmns.io

osm2gmns.io.load_from_csv.loadNetFromCSV(folder='', node_file=None, link_file=None,
movement_file=None, segment_file=None,
geometry_file=None, POI_file=None, coordinate_type='lonlat',
enconding=None)

Load a network from csv files in GMNS format

Parameters

• folder (str) – the folder where network files are stored

• node_file (str) – filename of the node file. required

• link_file (str) – filename of the link file. required

• movement_file (str, None) – filename of the movement file. optional

• segment_file (str, None) – filename of the segment file. optional

• geometry_file (str, None) – filename of the geometry file. optional

• POI_file (str, None) – filename of the POI file. optional

• coordinate_type (str) – the coordinate system used by the network to be loaded. can be
lonlat, meter, feet

• enconding (str, None) – the encoding used by the network files. if None, osm2gmns will
use the default encoding of the local operating system

Returns
network – an osm2gmns Network object

Return type
Network

3.5. Functions 25

osm2gmns, Release 0.7.3

osm2gmns.io.downloader.downloadOSMData(area_id, output_filename='map.osm',
url='www.overpass-api.de/api/interpreter')

Download OpenStreetMap data via overpass API

Parameters

• area_id (int) – relation_id of the area of interest

• output_filename (int) – full path where the downloaded network will be stored

• url (int) – OpenStreetMap API url

Return type
None

osm2gmns.io.writefile.outputNetToCSV(network, output_folder='', prefix='', projection=False,
encoding=None)

Output an osm2gmns network object to csv files in GMNS format

Parameters

• network (Network) – an osm2gmns network object

• output_folder (str) – path of the folder to store network files. can be an absolute or a
relative path

• prefix (str) – prefix of output csv files

• projection (bool) – if True, osm2gmns will project the network to a local coordinate
system when ouptting a network

• encoding (str) – the file encoding used to output a network

Return type
None

3.5.3 osm2gmns.movement

osm2gmns.movement.generate_movements.generateMovements(network)
Use osm2gmns built-in methods to generate movements for each node (intersection) in a network

Parameters
network (Network) – an osm2gmns Network object

Return type
None

3.5.4 osm2gmns.multiresolutionnet

osm2gmns.multiresolutionnet.build_mrnet.buildMultiResolutionNets(macronet,
generate_micro_net=True,
auto_movement_generation=True,
exclu-
sive_bike_walk_lanes=True,
connector_type=None,
width_of_lane=3.5,
length_of_cell=7.0)

Build the corresponding mesoscopic and microscopic networks for a source (macroscopic) network

26 Chapter 3. Contents

osm2gmns, Release 0.7.3

Parameters

• macronet (Network) – a soucrce osm2gmns Network object

• generate_micro_net (bool) – True: generate meso and micro networks; False: only gen-
erate meso network

• auto_movement_generation (bool) – automatically generate movements for intersec-
tions without movement information by calling function generateMovements in osm2gmns.
if auto_movement_generation is set as False, movements at intersections without movement
information will not be generated

• exclusive_bike_walk_lanes (bool) – build exclusive lanes for bike and walk

• connector_type (int) – link_type of connectors

• width_of_lane (float) – width of lanes in meter

• length_of_cell (float) – lenght of cells in meter

Return type
None

3.6 Sample Networks

3.6.1 Phoenix Sky Harbor International Airport

Fig. 11: Phoenix Sky Harbor International Airport

3.6. Sample Networks 27

osm2gmns, Release 0.7.3

3.6.2 Arizona State University, Tempe Campus

Fig. 12: Arizona State University, Tempe Campus

3.6.3 Arizona, US

3.6.4 US railway network (midwest)

3.6.5 Greater London, UK

3.6.6 Melbourne, Australia

3.7 Acknowledgement

This project is partially supported by National Science Foundation - United States under Grant No. CMMI 1663657
“Collaborative Research: Real-time Management of Large Fleets of Self-Driving Vehicles Using Virtual CyberTracks”

The second author also thanks for the early support from FHWA project titled “The Effective Integration of Analysis,
Modeling, and Simulation Tools - AMS Data hub Concept of Opeartions”. https://www.fhwa.dot.gov/publications/
research/operations/13036/004.cfm

Many thanks for GMNS specification efforts led by Scott Smith and Ian Berg from Volpe Center, USDOT. Their TRB
poster can be found at https://github.com/zephyr-data-specs/GMNS/blob/TRB/TRBPoster_22-02127.pdf

This document is prepared with the help from Entai Wang and Chongnan Li.

For program source code and sample network files, readers can visit the project homepage at ASU Trans+AI Lab
Github. Interested readers can also check the link for our online transportation modelling visualization platform, in
which network data are provided by osm2gmns.

28 Chapter 3. Contents

https://www.fhwa.dot.gov/publications/research/operations/13036/004.cfm
https://www.fhwa.dot.gov/publications/research/operations/13036/004.cfm
https://github.com/zephyr-data-specs/GMNS/blob/TRB/TRBPoster_22-02127.pdf
https://github.com/EntaiWang99
https://github.com/marcolee19970823
https://github.com/asu-trans-ai-lab
https://asu-trans-ai-lab.github.io/website_openlayer_4GMNS/

osm2gmns, Release 0.7.3

Fig. 13: Arizona, US

Fig. 14: US railway network (midwest)

3.7. Acknowledgement 29

osm2gmns, Release 0.7.3

Fig. 15: Greater London, UK

Fig. 16: Melbourne, Australia

30 Chapter 3. Contents

INDEX

B
buildMultiResolutionNets() (in module

osm2gmns.multiresolutionnet.build_mrnet), 26

C
combineShortLinks() (in module

osm2gmns.osmnet.combine_links), 24
connectPOIWithNet() (in module

osm2gmns.osmnet.pois), 24
consolidateComplexIntersections() (in module

osm2gmns.osmnet.complex_intersection), 23

D
downloadOSMData() (in module

osm2gmns.io.downloader), 25

G
generateLinkVDFInfo() (in module

osm2gmns.osmnet.enrich_net_info), 24
generateMovements() (in module

osm2gmns.movement.generate_movements), 26
generateNodeActivityInfo() (in module

osm2gmns.osmnet.enrich_net_info), 24
getNetFromFile() (in module

osm2gmns.osmnet.build_net), 22

L
loadNetFromCSV() (in module

osm2gmns.io.load_from_csv), 25

O
outputNetToCSV() (in module osm2gmns.io.writefile),

26

S
saveFig() (in module osm2gmns.osmnet.visualization),

25
show() (in module osm2gmns.osmnet.visualization), 24

31

	Publication
	Main Features
	Contents
	Installation
	Potential Issues

	GMNS
	Multi-Resolution Modeling
	Macroscopic Network
	Mesoscopic Network
	Microscopic Network

	Quick Start
	Download OSM Data
	Parse OSM Data
	Output Networks to CSV
	Consolidate Intersections
	Network Types and POI
	Generate Multi-Resolution Networks

	Functions
	osm2gmns.osmnet
	osm2gmns.io
	osm2gmns.movement
	osm2gmns.multiresolutionnet

	Sample Networks
	Phoenix Sky Harbor International Airport
	Arizona State University, Tempe Campus
	Arizona, US
	US railway network (midwest)
	Greater London, UK
	Melbourne, Australia

	Acknowledgement

	Index

