

osm2gmns

Authors: Jiawei Lu, Xuesong (Simon) Zhou

Email: jiaweil9@asu.edu, xzhou74@asu.edu

osm2gmns is an open-source Python package that enables users to conveniently obtain and
manipulate any networks from OpenStreetMap [https://www.openstreetmap.org/] (OSM). With a single line of Python code,
users can obtain and model drivable, bikeable, walkable, railway, and aeroway networks
for any region in the world and output networks to CSV files in GMNS [https://github.com/zephyr-data-specs/GMNS] format for seamless
data sharing and research collaboration. osm2gmns mainly focuses on providing researchers and
practitioners with flexible, standard and ready-to-use multi-modal transportation networks,
as well as a bunch of customized and practical functions to facilitate various research
and applications on traffic modeling.

Publication

Lu, J., & Zhou, X.S. (2023). Virtual track networks: A hierarchical modeling framework and
open-source tools for simplified and efficient connected and automated mobility (CAM) system
design based on general modeling network specification (GMNS). Transportation Research
Part C: Emerging Technologies, 153, 104223. paper link [https://doi.org/10.1016/j.trc.2023.104223]

Main Features

	Obtain any networks from OSM. osm2gmns parses map data from OSM and output networks to
csv files in GMNS format.

	Standard network format. osm2gmns adopts GMNS as the network format for seamless data
sharing and research collaboration.

	Ready-to-use network. osm2gmns cleans erroneous information from OSM map data and is able
to fill up critical missing values, e.g., lanes, speed and capacity, to quickly provide
ready-to-use networks.

	Directed network. two directed links are generated for each bi-directional osm ways identified by osm2gmns.

	Multi-modal support. five different network types are supported, including auto, bike, walk, railway, and aeroway

	Customized and practical functions to facilitate traffic modeling. functions include
complex intersection consolidation, moevement generation, traffic zone creation, short link combination,
network visualization.

	Multi-resolution modeling. osm2gmns automatically constructs the corresponding mesoscopic and microscopic
networks for any macroscopic networks in GMNS format.

Contents

	Installation
	Potential Issues

	GMNS

	Multi-Resolution Modeling
	Macroscopic Network

	Mesoscopic Network

	Microscopic Network

	Quick Start
	Download OSM Data

	Parse OSM Data

	Output Networks to CSV

	Consolidate Intersections

	Network Types and POI

	Generate Multi-Resolution Networks

	Functions
	osm2gmns.osmnet

	osm2gmns.io

	osm2gmns.movement

	osm2gmns.multiresolutionnet

	Sample Networks
	Phoenix Sky Harbor International Airport

	Arizona State University, Tempe Campus

	Arizona, US

	US railway network (midwest)

	Greater London, UK

	Melbourne, Australia

	Acknowledgement

For program source code and sample network files, readers can visit the project homepage [https://github.com/asu-trans-ai-lab]
at ASU Trans+AI Lab Github. Interested readers can also check the link [https://asu-trans-ai-lab.github.io/website_openlayer_4GMNS/] for our online
transportation modelling visualization platform, in which network data are provided by osm2gmns.

Installation

You can install the latest release of osm2gmns at PyPI [https://pypi.org/project/osm2gmns] via pip [https://packaging.python.org/key_projects/#pip]:

pip install osm2gmns

By running the command above, the osm2gmns package along with three required dependency packages
(Shapely [https://github.com/Toblerity/Shapely], osmium [https://github.com/osmcode/pyosmium], and numpy [https://github.com/numpy/numpy]) will be installed to your computer (if they have not
been installed yet).

Potential Issues

	Shapely

If you install osm2gmns in a conda environment, you may get an error message: “OSError: [WinError 126]
The specified module could not be found” when importing osm2gmns. To resolve this issue, you need to uninstall
the Shapely [https://github.com/Toblerity/Shapely] package first, and reinstall it manually using the command below.

conda install shapely

	osmium

Windows users may get an error message related to osmium [https://github.com/osmcode/pyosmium] (one of the dependency packages of osm2gmns)
when installing or using osm2gmns with Python version > 3.8. The reason is the highest Python version
that osmium supports on PyPI is Py3.8 for Windows.

Affected users can download binary wheels of osmium from our repository [https://github.com/jiawlu/OSM2GMNS/tree/master/dependencies] or osmium github homepage [https://github.com/osmcode/pyosmium/actions] and use pip to install the wheel file that matches your Python version.

GMNS

General Modeling Network Specification (GMNS [https://github.com/zephyr-data-specs/GMNS]), proposed by the Zephyr Foundation [https://zephyrtransport.org],
defines a common human and machine readable format for sharing routable road network files.
It is designed to be used in multi-modal static and dynamic transportation planning and
operations models. It will facilitate the sharing of tools and data sources by modelers.
For additional information on GMNS goals, history and requirements, please see the wiki [https://github.com/zephyr-data-specs/GMNS/wiki].

GMNS (version 0.92) includes the following features for use in static models:

	Configuration information and use definitions.

	Node and link files, to establish a routable network.

For dynamic models, GMNS (version 0.92) includes the following optional additional features:

	A segment file, with information that overrides the characteristics of a portion of a link.

	A lane file that allocates portions of the right-of-way. Lanes include travel lanes used by motor vehicles. They may also optionally include bike lanes, parking lanes, and shoulders.

	A segment_lane file that specifies additional lanes, dropped lanes, or changes to lane properties on a segment of a link.

	A movement file that specifies how inbound and outbound lanes connect at an intersection.

	Link, segment, lane and movement time-of-day (TOD) files, that allocate usage of network elements by time-of-day and day-of-week.

	Signal phase and timing files, for basic implementation of traffic signals.

osm2gmns uses GMNS as the standard when processing and manipulating networks, and thus any
network in GMNS format is fully compatible with osm2gmns.

Multi-Resolution Modeling

Multi-Resolution Modeling (MRM) is a modeling technology that creates a family of models
that represent the same phenomenon or a set of questions at more than two different resolutions.
The fine-grained spatial scales could cover corridors, roads, and lane representations,
and the temporal resolution refers to the time interval (or time stamps) at which the
dynamic state of the model is updated, typically ranging from days to seconds. Each
type of model (macroscopic, mesoscopic, or microscopic) has its own advantages and
disadvantages, and represents a trade-off between scales and resolution levels. The
ultimate goal of MRM is to seamlessly integrate models with different temporal and
spatial resolutions, while the focus of the cross-resolution approach is to
bridge the gaps between macroscopic and microscopic levels, so as to provide strong
theoretical support and deeper insights for both levels.

The osm2gmns package adopts the GMNS [https://github.com/zephyr-data-specs/GMNS] standard and further extends it to a inherently
consistent multi-resolution network modeling standard. With a single line of code,
osm2gmns can help users generate corresponding mesoscopic and microscopic networks for
any given macroscopic networks in GMNS format, enabling practitioners and researchers
to carry out various studies on transportation planning, designing, optimization,
simulation, and computation under different spatial granularities. In this section,
we mainly talk about the three levels of transportation network representation.

[image: _images/mrnet.png]

Multi-resolution network representation

Macroscopic Network

	node.csv

	Field

	Type

	Required?

	Comments

	name

	string

	
	

	node_id

	int

	yes

	unique key

	osm_node_id

	string or int

	
	corresponding node id in osm data

	osm_highway

	string

	
	point type in osm data

	zone_id

	int

	
	

	ctrl_type

	enum

	
	signal; null

	node_type

	string

	
	

	activity_type

	string

	
	defined by adjacent links

	is_boundary

	enum

	
	-1: boundary node only with incoming links; 0: no; 1: boundary
node only with outgoing links; 2: boundary node with both
incoming and outgoing links

	x_coord

	double

	yes

	WGS 84 is used in osm

	y_coord

	double

	yes

	WGS 84 is used in osm

	intersection_id

	int

	
	nodes belonging to one complex intersection have the same id

	poi_id

	int

	
	id of the corresponding poi

	notes

	string

	
	

	link.csv

A link is an edge in a network, defined by the nodes it travels from and to. It may have associated geometry
information[2]. Similar to node.csv, We also added several new attributes to the link file. Detailed
link data dictionary is listed below.

	Field

	Type

	Required?

	Comments

	name

	string

	
	

	link_id

	int

	yes

	unique key

	osm_way_id

	string or int

	
	corresponding way id in osm data

	from_node_id

	int

	yes

	

	to_node_id

	int

	yes

	

	dir_flag

	enum

	
	1: forward, -1: backward, 0:bidirectionial

	length

	float

	
	unit: meter

	lanes

	int

	
	

	free_speed

	float

	
	unit: kilometer/hour

	capacity

	float

	
	unit: veh/hr/lane

	link_type_name

	string

	
	

	link_type

	int

	
	

	geometry

	Geometry

	
	wkt [https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry]

	allowed_uses

	enum

	
	auto, bike, walk

	from_biway

	bool

	
	1: link created from a bidirectional way, 0: not

	is_link

	bool

	
	1: link connecting two roads, 0: not

There are two optional files including movement.csv and segement.csv that follow the exact same format as
defined in the GMMS standard. Readers can check the GMNS website for details.

In addition to the above files defined in the GMNS standard, osm2gmns can also produce poi.csv files
where point of interest information is stored. Detailed poi data dictionary is listed below.

	Field

	Type

	Required?

	Comments

	name

	string

	
	

	poi_id

	int

	yes

	unique key

	osm_way_id

	string or int

	
	corresponding way id in osm data

	osm_relation_id

	string or int

	
	corresponding relation id in osm data

	building

	string

	
	building tag in osm data

	amenity

	string

	
	amenity tag in osm data

	way

	string

	
	way tag in osm data

	geometry

	Geometry

	yes

	wkt [https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry]

	centroid

	Geometry

	
	wkt [https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry]

	area

	float

	
	area of the poi. unit: square meter

	area_ft2

	float

	
	area of the poi. unit: square feet

Mesoscopic Network

Compared to the original macroscopic network, the mesoscopic network has more detailed
information of the intersections. In the mesoscopic network, the research team expanded
each intersection represented by a node in the macroscopic network. The team built a
connector link for each intersection movement to facilitate intersection modeling,
especially for signalized intersections.

Macroscopic and mesoscopic networks have different link-level coding schemes. Macroscopic
networks often represent a road segment between two adjacent intersections as a link;
however, lane changes sometimes occur within a link, especially when close to intersections.
Changes in the number of lanes result in capacity changes, but the link attributes cannot
properly reflect these changes. This situation may bring inconvenience or even potential
errors when performing network modeling. In the GMNS standard, the comma-separated values
(CSV) file, segment.csv, stores lane changes. The research team split and converted each
link with lane changes from a macroscopic network to multiple mesoscopic links so that
each mesoscopic link has a homogeneous capacity.

	node.csv

	Field

	Type

	Required?

	Comments

	node_id

	int

	yes

	unique key

	zone_id

	int

	
	

	x_coord

	double

	yes

	WGS 84 is used in osm

	y_coord

	double

	yes

	WGS 84 is used in osm

	macro_node_id

	int

	
	id of its parent macroscopic node

	macro_link_id

	int

	
	id of its parent macroscopic link

	activity_type

	string

	
	

	is_boundary

	enum

	
	-1: boundary node only with incoming links; 0: no; 1: boundary
node only with outgoing links

	link.csv

A link is an edge in a network, defined by the nodes it travels from and to. It may have associated geometry
information[2]. Similar to node.csv, We also added several new attributes to the link file. Detailed
link data dictionary is listed below.

	Field

	Type

	Required?

	Comments

	link_id

	int

	yes

	unique key

	from_node_id

	int

	yes

	

	to_node_id

	int

	yes

	

	dir_flag

	enum

	
	1: forward, -1: backward, 0:bidirectionial

	length

	float

	
	unit: meter

	lanes

	int

	
	

	free_speed

	float

	
	unit: kilometer/hour

	capacity

	float

	
	unit: veh/hr/lane

	link_type_name

	string

	
	

	link_type

	int

	
	

	geometry

	Geometry

	
	wkt [https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry]

	macro_node_id

	int

	
	id of its parent macroscopic node

	macro_link_id

	int

	
	id of its parent macroscopic link

	mvmt_txt_id

	enum

	
	NBL, NBT, NBR, NBU, SBL, SBT, SBR, SBU, EBL, EBT, EBR, EBU,
WBL, WBT, WBR, WBU

	allowed_uses

	enum

	
	auto, bike, walk

Microscopic Network

In the Maryland case study, microscopic networks used a lane-by-lane, cell-based representation.
Instead of a conceptual line segment, lanes represented each link. The research team further
discretized lanes into small cells to accurately describe vehicle motion status when moving on
the road. The team also created changing cells to enable vehicles to switch trajectories between
lanes. Users can customize the length of cells to accommodate different modeling needs.

	node.csv

	Field

	Type

	Required?

	Comments

	node_id

	int

	yes

	unique key

	zone_id

	int

	
	

	x_coord

	double

	yes

	WGS 84 is used in osm

	y_coord

	double

	yes

	WGS 84 is used in osm

	meso_link_id

	int

	
	id of its parent mesoscopic link

	lane_no

	int

	
	start from 1 from inner side to outer side

	is_boundary

	enum

	
	-1: boundary node only with incoming links; 0: no; 1: boundary
node only with outgoing links

	link.csv

A link is an edge in a network, defined by the nodes it travels from and to. It may have associated geometry
information[2]. Similar to node.csv, We also added several new attributes to the link file. Detailed
link data dictionary is listed below.

	Field

	Type

	Required?

	Comments

	link_id

	int

	yes

	unique key

	from_node_id

	int

	yes

	

	to_node_id

	int

	yes

	

	dir_flag

	enum

	
	1: forward, -1: backward, 0:bidirectionial

	length

	float

	
	unit: meter

	lanes

	int

	
	

	free_speed

	float

	
	unit: kilometer/hour

	capacity

	float

	
	unit: veh/hr/lane

	link_type_name

	string

	
	

	link_type

	int

	
	

	geometry

	Geometry

	
	wkt [https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry]

	macro_node_id

	int

	
	id of its parent macroscopic node

	macro_link_id

	int

	
	id of its parent macroscopic link

	meso_link_id

	int

	
	id of its parent mesoscopic link

	cell_type

	enum

	
	1: traveling cell, 2: lane changing cell

	additional_cost

	float

	
	

	lane_no

	int

	
	start from 1 from inner side to outer side

	mvmt_txt_id

	enum

	
	NBL, NBT, NBR, NBU, SBL, SBT, SBR, SBU, EBL, EBT, EBR, EBU,
WBL, WBT, WBR, WBU

	allowed_uses

	enum

	
	auto, bike, walk

[1] https://github.com/zephyr-data-specs/GMNS/blob/master/Specification/Node.md

[2] https://github.com/zephyr-data-specs/GMNS/blob/master/Specification/Link.md

Quick Start

In this section, some examples are provided to quickly show how to use osm2gmns to generate, manipulate
and output networks.

Download OSM Data

To reduce uncertainties while directly parsing network data from the osm server via APIs, osm2gmns uses downloaded
osm files to extract useful network information. As a result, the first step is preparing osm files.

Thanks to the open-source nature of OpenStreetMap, there are lots of APIs and mirror sites that we can use to
download osm map data. We list several popular sites here for users to choose.

	OpenStreetMap Homepage

On OpenStreetMap homepage [https://www.openstreetmap.org], click the Export button to enter Export mode. Before downloading,
you may need to span and zoom in/out the map to make sure that your target area is properly shown on the screen.
Or, you can use Manually select a different area to select your area more precisely. Click the Export
button in blue to export the network you want.

Note that if the target area is too large, you may get an error message: “You requested too many nodes
(limit is 50000). Either request a smaller area, or use planet.osm”. In this case, you can always click
Overpass API to download the network you need via a mirror site.

[image: _images/osmhp.png]

Download osm data from OpenStreetMap homepage

	Geofabrik

Different from the way of downloading map data from OpenStreetMap homepage, Geofabrik [https://download.geofabrik.de/] enables you to
download network data for administrative areas. On OpenStreetMap homepage, we can only download areas
defined by rectangles. In Geofabrik, you can click the corresponding quick link of your interested
region to download the map data you need. You can always click the name of regions to check if sub region
data are available.

Generally, there are three types of file format for users to choose when downloading map data.
osm2gmns supports .pbf and .osm files. In osm2gmns, networks stored in .osm files
are parsed more quickly than those stored in .pbf files. However, compared with .pbf files,
.osm files take much more hard disk space to store networks and much more space in RAM while parsing.

[image: _images/geofabrik.png]

Download osm data from Geofabrik

	BBBike

If your target area is neither an administrative region nor a rectangle, BBBike [https://extract.bbbike.org/] may be a good choice.
BBBike [https://extract.bbbike.org/] enables you to select your region using a polygon. BBBike [https://extract.bbbike.org/] supports numerous file formats
to output and store network data. Users can select a proper one according to their requirements.

[image: _images/bbbike.png]

Download osm data from BBBike

Note

	The file formats of map data supported in osm2gmns include .osm, .xml, and .pbf.

	Overpass API

osm2gmns also enables users to download OSM data within the region of interest using a built-in function.
A region can be a state, city, or even university. On OpenStreetMap homepage [https://www.openstreetmap.org], search the region name to get
its unique relation id. The following example shows how to download Tempe city OSM data using function
downloadOSMData.

[image: _images/osm_id.png]

Get region id from OpenStreetMap homepage

>>> import osm2gmns as og

>>> og.downloadOSMData(110833, 'tempe.osm')

Parse OSM Data

We use the region around Arizona State University, Tempe Campus in this guide to introduce some major functions
in osm2gmns.

Obtain a transportation network from an osm file.

>>> import osm2gmns as og

>>> net = og.getNetFromFile('asu.osm')

A link will be included in the network file from osm database if part of the link lies in the region
that users selected. If argument strict_mode (default: True) is set as True, link segments that
outside the region will be cut off when parsing osm data. If argument strict_mode is set as False,
all links in the network file will be imported.

[image: _images/bstrict1.png]

Parsed network with strict_mode=False

[image: _images/bstrict2.png]

Parsed network with strict_mode=True

One loaded network may contain several sub networks, with some sub networks not accessible from others.
In most cases, these sub networks include a large sub network and some isolated nodes or links. When the
number of nodes of a sub network is less than argument min_nodes (default: 1), this sub network
will be discarded.

Users can use argument combine (default: False) to control short link combinations. If combine
is enabled, two-degree nodes (nodes with one incoming link and one outgoing link) will be removed, and two adjacent
links will be combined to generate a new link. Note that link combination will be performed only when two candidate
links have the exact same link attributes, e.g., name, speed, lanes.

Notice that most links do not have “lanes” information in the map data provided by OpenStreetMap. Thus,
we use a default lanes dictionary for each link type in osm2gmns. By setting default_lanes (default: False)
as True, the default value will be assigned to a link if it does not come with “lanes” information. The
default dictionary in osm2gmns:

default_lanes_dict = {'motorway': 4, 'trunk': 3, 'primary': 3, 'secondary': 2, 'tertiary': 2,
 'residential': 1, 'service': 1, 'cycleway':1, 'footway':1, 'track':1,
 'unclassified': 1, 'connector': 2}
default_speed_dict = {'motorway': 120, 'trunk': 100, 'primary': 80, 'secondary': 60, 'tertiary': 40,
 'residential': 30, 'service': 30, 'cycleway':5, 'footway':5, 'track':30,
 'unclassified': 30, 'connector':120}
default_capacity_dict = {'motorway': 2300, 'trunk': 2200, 'primary': 1800, 'secondary': 1600, 'tertiary': 1200,
 'residential': 1000, 'service': 800, 'cycleway':800, 'footway':800, 'track':800,
 'unclassified': 800, 'connector':9999}

default_lanes also accepts a dictionary. In that case, osm2gmns will use the dictionary provided by users
to update the default dictionary.

A similar fashion applies for argument default_speed and default_capacity.

Output Networks to CSV

Based on the net instance obtained from the last step, outputNetToCSV can be used to output the parsed network
to CSV files.

>>> og.outputNetToCSV(net)

Users can use argument output_folder to specify the folder to store output files. Node information will be
written to node.csv, while link information will be written to link.csv.

Consolidate Intersections

In OpenStreetMap, one large intersection is often represented by multiple nodes. This structure brings some
difficulties when performing traffic-oriented modelings. osm2gmns enables users to consolidate intersections
that are originally represented by multiple nodes into a single node. Note that osm2gmns only identifies and
consolidates signalized intersections.

>>> net = og.getNetFromFile('asu.osm')
>>> og.consolidateComplexIntersections(net, auto_identify=True)
>>> og.outputNetToCSV(net)

[image: _images/consolidation.png]

Complex intersection consolidation

Users can visualize the consolidated network in QGIS [https://qgis.org] or NeXTA [https://github.com/asu-trans-ai-lab/NeXTA4GMNS].
For complex interestions that were not successfully identified and consolidated by osm2gmns, users can manually specify
them by revising the column “intersection_id” in node.csv and utilize the commands below to do the re-consolidation.
Nodes assgined with the same “intersection_id” will be consolidated into a new node.

>>> net = og.loadNetFromCSV(node_file='node.csv', link_file='link.csv')
>>> og.consolidateComplexIntersections(net, auto_identify=False)
>>> og.outputNetToCSV(net, output_folder='consolidated')

Network Types and POI

osm2gmns supports five different network types, including auto, bike, walk, railway, aeroway.
Users can get different types of networks by specifying the argument network_types (default: (auto,)).

>>> # obtain the network for bike
>>> net = og.getNetFromFile('asu.osm', network_types='bike')
>>> # obtain the network for walk and bike
>>> net = og.getNetFromFile('asu.osm', network_types=('walk','bike'))
>>> # obtain the network for auto, railway and aeroway
>>> net = og.getNetFromFile('asu.osm', network_types=('auto','railway','aeroway'))

Obtain POIs (Point of Interest) from osm map data.

>>> net = og.getNetFromFile('asu.osm', POI=True)

If POI (default: False) is set as True, a file named poi.csv will be generated when outputting
a network using function outputNetToCSV.

[image: _images/poi1.png]

Network with POIs

Connect POIs with transportation network.

>>> net = og.getNetFromFile('asu.osm', POI=True)
>>> og.connectPOIWithNet(net)

By using function connectPOIWithNet, a node located at the centroid of each POI will be generated to
represent the POI. Then connector links will be built to connect the POI node with the nearest node in the
transportation network.

[image: _images/poi2.png]

Connect POIs with network

Generate Multi-Resolution Networks

osm2gmns can generate the corresponding mesoscopic and microscopic network for any macroscopic networks in GMNS format.

Generate multi-resolution networks from an osm file.

>>> net = og.getNetFromFile('asu.osm', default_lanes=True)
>>> og.consolidateComplexIntersections(net, auto_identify=True)
>>> og.buildMultiResolutionNets(net)
>>> og.outputNetToCSV(net)

Generate multi-resolution networks from a macroscopic network provided by user (movement information is automatically
generated by osm2gmns).

>>> net = og.loadNetFromCSV(node_file='node.csv', link_file='link.csv')
>>> og.buildMultiResolutionNets(net)
>>> og.outputNetToCSV(net)

Generate multi-resolution networks from a macroscopic network provided by user (movement information is from the user).

>>> net = og.loadNetFromCSV(node_file='node.csv', link_file='link.csv', movement_file='movement.csv')
>>> og.buildMultiResolutionNets(net)
>>> og.outputNetToCSV(net)

Functions

osm2gmns.osmnet

	
osm2gmns.osmnet.build_net.getNetFromFile(filename='map.osm', network_types=('auto',), link_types='all', POI=False, POI_sampling_ratio=1.0, strict_mode=True, offset='no', min_nodes=1, combine=False, bbox=None, default_lanes=False, default_speed=False, default_capacity=False, start_node_id=0, start_link_id=0)

	Get an osm2gmns Network object from an osm file

	Parameters:

	
	filename (str) – path of an osm file; can be absolute or relative path; supported osm file formats: .osm, .xml, and .pbf

	network_types (str, tuple of strings, list of strings, or set of strings) – osm2gmns supports five different network types, including auto, bike, walk, railway, and aeroway.
network_types can be any one or any combinations of the five supported network types

	link_types (str, tuple of strings, list of strings, or set of strings) – supported link types: motorway, trunk, primary, secondary, tertiary, residential, service, cycleway,
footway, track, unclassified, connector, railway, and aeroway.

	POI (bool) – if extract point of interest information

	POI_sampling_ratio (float) – prcentage of POIs to be extracted if POI is set as True. this value should be a float number between 0.0 and 1.0.

	strict_mode (bool) – if True, network elements (node, link, poi) outside the boundary will be discarded

	offset (str) – offset overlapping links. the value of this argument can be ‘left’, ‘right’, or ‘no’

	min_nodes (int) – a network return by the function may contain several sub-networks that are disconnected from each other.
sub-networks with the number of nodes less than min_nodes will be discarded

	combine (bool) – if True, adjacent short links with the same attributes will be combined into a long link. the operation will only
be performed on short links connected with a two-degree nodes (one incoming link and one outgoing link)

	bbox (tuple of four float/int values, list of four float/int values, None) – specify the boundary of the network to be extracted, consisting of minimum latitude, minimum longtitude, maximum latitude, and maximum longitud.
if None, osm2gmns will try to find network boundary from the input osm file

	default_lanes (bool, dict) – if True, assign a default value for links without lanes information based on built-in settings. if a dict,
assign a default value for links without lanes information based on the dict passed by users.

	default_speed (bool, dict) – if True, assign a default value for links without speed information based on built-in settings. if a dict,
assign a default value for links without speed information based on the dict passed by users.

	default_capacity (bool, dict) – if True, assign a default value for links without capacity information based on built-in settings. if a dict,
assign a default value for links without capacity information based on the dict passed by users.

	start_node_id (int) – osm2gmns assigns node_ids to generated nodes starting from start_node_id.

	start_link_id (int) – osm2gmns assigns link_ids to generated links starting from start_link_id

	Returns:

	network – osm2gmns Network object

	Return type:

	Network

	
osm2gmns.osmnet.complex_intersection.consolidateComplexIntersections(network, auto_identify=False, intersection_file=None, int_buffer=20.0)

	Consolidate each complex intersection that are originally represented by multiple nodes in osm into one node. Nodes
with the same intersection_id will be consolidated into one node. intersection_id of nodes can be obtained in three ways.

(1) set the argument auto_identify as True, then osm2gmns will automatically identify complex intersections and assign
intersection_id for corresponding nodes.

	provide an intersection file that specifies the central position (required) and buffer (optional) of each complex intersection.

	user can assign intersection_id to nodes manually in network csv files (node.csv), and load the network using function loadNetFromCSV provided by osm2gmns.

The priority of the three approaches is (3) > (2) > (1).
Rules used in the approach (1) to identify if two nodes belong to a complex intersection: (a) ctrl_type of the two nodes must be signal;
(b) there is a link connecting these two nodes, and the length of the link is shorter than or equal to the argument int_buffer.

	Parameters:

	
	network (Network) – osm2gmns Network object

	auto_identify (bool) – if automatically identify complex intersections using built-in methods in osm2gmns. nodes that belong to a complex
intersection will be assigned with the same intersection_id

	intersection_file (str) – path of an intersction csv file that specifies complex intersections. required fields: central position of intersections
(in the form of x_coord and y_coord); optional field: int_buffer (if not specified, the global int_buffer will be used,
i.e., the forth arugment). For each record in the intersection_file, osm2gmns consolidates all nodes with a distance to the
central position shorter than buffer.

	int_buffer (float) – the threshold used to check if two nodes belong to one complex intersection. the unit is meter

	Return type:

	None

	
osm2gmns.osmnet.combine_links.combineShortLinks(network)

	Combine links connected by two-degree nodes into a longer link

	Parameters:

	network (Network) – osm2gmns Network object

	Return type:

	None

	
osm2gmns.osmnet.enrich_net_info.generateNodeActivityInfo(network)

	Generate activity information, including activity_type, is_boundary, zone_id for nodes. activity_type includes
motorway, primary, secondary, tertiary, residential, etc, and is determined by adjacent links

	Parameters:

	network (Network) – osm2gmns Network object

	Return type:

	None

	
osm2gmns.osmnet.enrich_net_info.generateLinkVDFInfo(network)

	Generate VDF information, including VDF_fftt1 and VDF_cap1 for links.
The unit of VDF_fftt1 and VDF_cap1 are min and veh/hour/link, respectively

	Parameters:

	network (Network) – osm2gmns Network object

	Return type:

	None

	
osm2gmns.osmnet.pois.connectPOIWithNet(network)

	Connect POIs with the traffic network. Specifically, for each POI, osm2gmns will build a bi-directional connector to connect the POI
with its nearest node in the traffic network

	Parameters:

	network (Network) – an osm2gmns Network object

	Return type:

	None

	
osm2gmns.osmnet.visualization.show(network, save=False, figsize=None)

	Show the network in a pop-up window

	Parameters:

	
	network (Network) – an osm2gmns Network object

	save (bool) – if True, the plot will also be saved to a local file named network.jpg

	figsize (tuple of int/float, list of int/float) – size of the figure

	Return type:

	None

	
osm2gmns.osmnet.visualization.saveFig(network, picpath='network.jpg', figsize=None)

	Save the network plot to a local file

	Parameters:

	
	network (Network) – an osm2gmns Network object

	picpath (str) – path to store to network plot. can be an absolute or a relative path

	figsize (tuple of int/float, list of int/float) – size of the figure

	Return type:

	None

osm2gmns.io

	
osm2gmns.io.load_from_csv.loadNetFromCSV(folder='', node_file=None, link_file=None, movement_file=None, segment_file=None, geometry_file=None, POI_file=None, coordinate_type='lonlat', enconding=None)

	Load a network from csv files in GMNS format

	Parameters:

	
	folder (str) – the folder where network files are stored

	node_file (str) – filename of the node file. required

	link_file (str) – filename of the link file. required

	movement_file (str, None) – filename of the movement file. optional

	segment_file (str, None) – filename of the segment file. optional

	geometry_file (str, None) – filename of the geometry file. optional

	POI_file (str, None) – filename of the POI file. optional

	coordinate_type (str) – the coordinate system used by the network to be loaded. can be lonlat, meter, feet

	enconding (str, None) – the encoding used by the network files. if None, osm2gmns will use the default encoding of the local operating system

	Returns:

	network – an osm2gmns Network object

	Return type:

	Network

	
osm2gmns.io.downloader.downloadOSMData(area_id, output_filename='map.osm', url='www.overpass-api.de/api/interpreter')

	Download OpenStreetMap data via overpass API

	Parameters:

	
	area_id (int) – relation_id of the area of interest

	output_filename (int) – full path where the downloaded network will be stored

	url (int) – OpenStreetMap API url

	Return type:

	None

	
osm2gmns.io.writefile.outputNetToCSV(network, output_folder='', prefix='', projection=False, encoding=None)

	Output an osm2gmns network object to csv files in GMNS format

	Parameters:

	
	network (Network) – an osm2gmns network object

	output_folder (str) – path of the folder to store network files. can be an absolute or a relative path

	prefix (str) – prefix of output csv files

	projection (bool) – if True, osm2gmns will project the network to a local coordinate system when ouptting a network

	encoding (str) – the file encoding used to output a network

	Return type:

	None

osm2gmns.movement

	
osm2gmns.movement.generate_movements.generateMovements(network)

	Use osm2gmns built-in methods to generate movements for each node (intersection) in a network

	Parameters:

	network (Network) – an osm2gmns Network object

	Return type:

	None

osm2gmns.multiresolutionnet

	
osm2gmns.multiresolutionnet.build_mrnet.buildMultiResolutionNets(macronet, generate_micro_net=True, auto_movement_generation=True, exclusive_bike_walk_lanes=True, connector_type=None, width_of_lane=3.5, length_of_cell=7.0)

	Build the corresponding mesoscopic and microscopic networks for a source (macroscopic) network

	Parameters:

	
	macronet (Network) – a soucrce osm2gmns Network object

	generate_micro_net (bool) – True: generate meso and micro networks; False: only generate meso network

	auto_movement_generation (bool) – automatically generate movements for intersections without movement information by calling function generateMovements
in osm2gmns. if auto_movement_generation is set as False, movements at intersections without movement information will not be generated

	exclusive_bike_walk_lanes (bool) – build exclusive lanes for bike and walk

	connector_type (int) – link_type of connectors

	width_of_lane (float) – width of lanes in meter

	length_of_cell (float) – lenght of cells in meter

	Return type:

	None

Sample Networks

Phoenix Sky Harbor International Airport

[image: _images/net_phx.png]

Phoenix Sky Harbor International Airport

Arizona State University, Tempe Campus

[image: _images/net_asu.png]

Arizona State University, Tempe Campus

Arizona, US

[image: _images/net_az.png]

Arizona, US

US railway network (midwest)

[image: _images/net_midwest.png]

US railway network (midwest)

Greater London, UK

[image: _images/net_london.png]

Greater London, UK

Melbourne, Australia

[image: _images/net_melbourne.png]

Melbourne, Australia

Acknowledgement

This project is partially supported by National Science Foundation - United States under
Grant No. CMMI 1663657 “Collaborative Research: Real-time Management of Large Fleets of
Self-Driving Vehicles Using Virtual CyberTracks”

The second author also thanks for the early support from FHWA project titled “The Effective
Integration of Analysis, Modeling, and Simulation Tools - AMS Data hub Concept of Opeartions”.
https://www.fhwa.dot.gov/publications/research/operations/13036/004.cfm

Many thanks for GMNS specification efforts led by Scott Smith and Ian Berg from Volpe Center,
USDOT. Their TRB poster can be found at https://github.com/zephyr-data-specs/GMNS/blob/TRB/TRBPoster_22-02127.pdf

This document is prepared with the help from Entai Wang [https://github.com/EntaiWang99] and Chongnan Li [https://github.com/marcolee19970823].

Index

 B
 | C
 | D
 | G
 | L
 | O
 | S

B

 	
 	buildMultiResolutionNets() (in module osm2gmns.multiresolutionnet.build_mrnet)

C

 	
 	combineShortLinks() (in module osm2gmns.osmnet.combine_links)

 	
 	connectPOIWithNet() (in module osm2gmns.osmnet.pois)

 	consolidateComplexIntersections() (in module osm2gmns.osmnet.complex_intersection)

D

 	
 	downloadOSMData() (in module osm2gmns.io.downloader)

G

 	
 	generateLinkVDFInfo() (in module osm2gmns.osmnet.enrich_net_info)

 	generateMovements() (in module osm2gmns.movement.generate_movements)

 	
 	generateNodeActivityInfo() (in module osm2gmns.osmnet.enrich_net_info)

 	getNetFromFile() (in module osm2gmns.osmnet.build_net)

L

 	
 	loadNetFromCSV() (in module osm2gmns.io.load_from_csv)

O

 	
 	outputNetToCSV() (in module osm2gmns.io.writefile)

S

 	
 	saveFig() (in module osm2gmns.osmnet.visualization)

 	
 	show() (in module osm2gmns.osmnet.visualization)

 _images/consolidation.png
(a) original representation

oo
(b) consolidated representation

_images/geofabrik.png
OpenStreetMap Data Extracts

The OpenStreetMap data files provided on this server do not contain the user names, user IDs and changeset IDs of the OSM
objects because these fields are assumed to contain personal information about the OpenStreetMap contributors and are therefore
subject to data protection regulations in the European Union.

Extracts with ful metadata are available to OpenStreetMap contributors only.

Welcome to Geofabrik's free download server. This server has data extracts from the OpenStreetMap project which are normally
updated every day. Select your continent and then your country of interest from the list below. (If you have been directed to this
page from elsewhere and are not familiar with OpenStreetMap, we highly recommend that you read up on OSM before you use the
data.) This open data download service is offered free of charge by Geofabrik GmbH.

Willkommen auf dem Geofabrik-Downloadserver. Hier gibt es Daten-Auszige aus dem OpenStreetMap-Projekt, die normalerweise taglich
aktualisiert werden. Wahlen Sie aus dem Verzeichnis unten den Kontient und ggf. das Land, fur die Sie Daten bengtigen. (Wenn Sie von
anderswo auf dieser Seite gelandet sind und von OpenStreetMap nichts wissen, dann ist es empfehlenswert, sich mit dem Projekt
vertraut zu machen, bevor Sie mit den Daten arbeiten.) Diese Downloads werden von der Geofabrik GmbH kostenlos angeboten.

Click on the region name to see the overview page for that region, or select one of the file extension links for quick access.

Sub Region Quick Links

~osm.pbf .shp.zip .osm.bz2
Africa Losm.pbfl (4.2 GB) x L.osm.bz2]
Antarctica Losmpbfl (29.1MB) [Lshpzip] [Losmbz2]
Asia Losm.pbf] (8.9 GB) x L.osm.bz2]
Australia and Oceania Losm.pbf] (828 MB) * L.osm.bz2]
Central America Losm.pbf] (419 M8) * L.osm.bz2]
Europe (22.4 GB) * L.osm.bz2]
North America [osm.pbfl (9.9 GB) x [.osm.bz2]

GEOFABRIK *downloads

8 Not what you were looking for? Geofabrik is 2
consulting and software development firm based in
Karlsruhe, Germany specializing in OpenStreetMap.
services. We're happy to help you with data preparation,
processing, server setup and the like. Check out our web
site and contact us if we can be of service.

™= picht das Richtige dabei? Die Geofabrik ist ein auf
OpenStreetMap spezialisiertes Beratungs- und

_images/bstrict1.png
IR

]

_images/bstrict2.png

_images/net_az.png

_images/net_london.png

_images/mrnet.png
(a) macroscopic nefwork (b) mesoscopic nefwork

(c) microscopic network

_images/net_asu.png

_images/net_melbourne.png

_images/net_midwest.png

_images/bbbike.png
Welcome to BBBike's free download server! This server has data extracts from the

OpenStreetMap project for more than 200 areas world wide in different formats and customized
extracts.

1. Download a ready extract of more than 200 areas world wide, 2-50MB in size for each city.
Supported formats are: OSM, PBF, GeoJSON, SQLite, Garmin (style OSM, Cycle, Leisure,
Onroad, Openfietslite, OpenSeaMap, OpenTopoMap, BBBike), Osmand, mapsforge, Navit,
maps.me, SVG, and Esri Shapefile.

n't find the area you want? Select your own region - a rectangle or polygon up to 6000 x
4000km large, or 512MB file size.

Name of area to exmet
Jeowmmema

Youremiladdress (7) .

‘Leftlower comer (South-West)
IngGases lBesy | U0
‘Right0p comer (North East) .
Geer laless
Fomt (1)

frrprT——
© add poins o polygon
© roe, esiz o dag polygon B

B~ EmE
dovlond vseah| donse

(©)2012 BB keors by Wlfam Schcider
St st (0 perSimesp o comioion

3. For experts only: download the full planet, in PBF (40GB) format

_images/net_phx.png
J)

fh

<3-20-eoesuobes
JEERRIRRY,

o

=N

7

nav.xhtml

 Table of Contents

 		
 osm2gmns

 		
 Installation

 		
 Potential Issues

 		
 GMNS

 		
 Multi-Resolution Modeling

 		
 Macroscopic Network

 		
 Mesoscopic Network

 		
 Microscopic Network

 		
 Quick Start

 		
 Download OSM Data

 		
 Parse OSM Data

 		
 Output Networks to CSV

 		
 Consolidate Intersections

 		
 Network Types and POI

 		
 Generate Multi-Resolution Networks

 		
 Functions

 		
 osm2gmns.osmnet

 		
 getNetFromFile()

 		
 consolidateComplexIntersections()

 		
 combineShortLinks()

 		
 generateNodeActivityInfo()

 		
 generateLinkVDFInfo()

 		
 connectPOIWithNet()

 		
 show()

 		
 saveFig()

 		
 osm2gmns.io

 		
 loadNetFromCSV()

 		
 downloadOSMData()

 		
 outputNetToCSV()

 		
 osm2gmns.movement

 		
 generateMovements()

 		
 osm2gmns.multiresolutionnet

 		
 buildMultiResolutionNets()

 		
 Sample Networks

 		
 Phoenix Sky Harbor International Airport

 		
 Arizona State University, Tempe Campus

 		
 Arizona, US

 		
 US railway network (midwest)

 		
 Greater London, UK

 		
 Melbourne, Australia

 		
 Acknowledgement

_images/poi1.png

_images/poi2.png
| ko
B :

=xam
Vl

L
A g (\«V
.

aﬂ N L 1 -H:'“ Q!L.l!lli:% i ;:g

‘S e linangy,“ L "°g ';; O

ol b gy e

o o, s 5"355 i,
p—)

10 | -

:]

_images/osm_id.png
EOpenStreetMap ‘ Edit | ~ | History | Export ‘ GPS Traces User Diaries Copyright Help About | LogIn

| search Where s this?

Relation: Tempe *

(110833)

Version #29

broken relation and cleanup

Edited 8 months ago by wireguy

Changeset #117995708

Tags
admin_level 8
alt_name City of Tempe
boundary administrative
gnis:id 2412045
name Tempe
name:ru Temne
name:uk Tewmni
population 161719
population:date 2010-04-01

TIGER/Line® 2008
Place Shapefiles
(http:/fwww.census.
gov/geofwww/tiger/
); TIGER/Line 2019
Place Shapefiles
(https://catalog.dat
a.gov/dataset/tiger-
line-shapefile-
2019-2010-state-
arizona-2010-
census-public-use-
microdata-area-
puma-state-b)

source

_images/osmhp.png
"‘Opensmﬂhp Edit | v | History | Export ‘ GPS Traces User Diaries Copyright Help About Jiaweig2 ~

Export

33.4432
-111.9616 -111.8695

33.4004

Manually select a different area

Licence

OpenStreetMap data is licensed under the
Open Data Commons Open Database License

(ODbL).

Ifthe above export fails, please consider using | i ; 5 L
one of the sources listed below: i 3 < IEup phoenin subivison

£
Overpass API)
Download this bounding bor from a mirror
of the Opentreetiiap database i
iose
Planet OSM : ek

Regularly-updated copies of the complete: 13 = — © OpenStreethtap contributors ¥ Make a Donation. Website and AP terms.

_static/file.png

_static/minus.png

_static/plus.png

